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Abstract

A numerical and experimental investigation is presented of a periodic phase-change process dominated by heat

conduction. In the experimental arrangement a plane slab of PCM is periodically heated from above. A one-dimen-

sional control volume computer code has been developed for the solution of the corresponding mathematical model.

The comparison between numerical predictions and experimental data shows good agreement, even though appreciable

effects are produced by free convection and heat transfer to the environment, neglected in the model but unavoidable in

the experiment. Finally, in order to study the energy stored in the process, parameters like amplitude and mean value of

the oscillations are discussed as functions of the significant dimensionless numbers of the problem. � 2002 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

Among the available techniques suitable for storing

thermal energy and for controlling temperature in sys-

tems subjected to periodic heating, use of the solid–liquid

phase-change has attracted considerable attention. This

process allows, for periodic heating, the conversion of

temperature oscillations into oscillations of the melting

interface, with a significant damping of the perturba-

tions. Furthermore, the energy stored during melting can

be recovered during freezing, with significant energetic

opportunities. Possible applications of engineering in-

terest deal with a wide range of technologies, for instance

steel industry, ground freezing, solar energy storage,

thermal control systems for spacecraft and industrial

waste heat recovery.

For the theoretical analysis of a melting phenomenon

simultaneous solution is needed of the Fourier equation

in the solid phase and of the mass, momentum and en-

ergy equations in the liquid phase, coupled by proper

boundary conditions at the solid–liquid interface. This

problem displays certain features that make the treat-

ment particularly difficult. Even if natural convection is

neglected, during the phase-change process the interface

between the two phases moves and its position is a priori
unknown. This makes the mathematical model strongly

non-linear. Further difficulties arise when two-dimen-

sional and three-dimensional geometries are considered

or temperature-dependence of the thermophysical prop-

erties is taken into account. For all these reasons, only a

limited number of analytical solutions for particularly

simple cases exist, and for predictions of practical interest

the use of numerical methods is required.

In the literature Bransier [1] seems to be the first

who studied a system undergoing alternate processes of

melting and freezing. He analysed the problem of cyclic

latent heat thermal storage both for slabs and hollow

cylinders, by means of a one-dimensional conduction
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model. Bardon et al. [2] performed the first experimental

study on the periodic heat transfer for a vertical slab of

PCM. Kalhori and Ramadhyani [3] investigated exper-

imentally cyclic solid–liquid phase-change with finned

and unfinned vertical cylinders embedded in n-eicosane.
Jariwala et al. [4] studied the cyclic thermal performance

of a latent heat thermal storage system obtained from a

cylindrical container filled with a commercial paraffin

wax, in which a helical pipe of copper was embedded.

The results of a quasi-steady one-dimensional model

developed for the purpose were in good agreement with

the experimental data for energy storage and recovery.

Sasaguchi and Viskanta [5] studied experimentally the

effects of free convection on the periodic melting and

freezing of pure n-octadecane around two cylindrical
pipes spaced vertically. Adebiyi [6] carried out a second-

law analysis on a packed bed storage system utilising

phase-change materials. Bellecci and Conti [7–9] devel-

oped a numerical model to simulate the cyclic behaviour

of a phase-change solar energy storage system. Using

this model they expressed a criterion for the optimal

design of such a storage system. Hasan et al. [10] in-

vestigated numerically and experimentally the conduc-

tion controlled periodic melting and freezing of a plane

slab due to a thermal boundary condition cycling above

and below the melting point. This investigation was

extended by Voller et al. [11] taking into account the

fluid motion in the liquid phase. Ghasemi and Molki

[12], taking the analysis further, investigated numerically

the effect of a thermal boundary condition cycling above

and below the solidus temperature on the melting and

solidification of steel in a rectangular enclosure. This,

therefore, was able to include the two-phase ‘‘mushy’’

region at the liquid/solid interface.

A new trend in the utilisation of latent heat for the

energy storage was started by Gong and Majumdar [13]

using composite slabs consisting of PCMs with different

melting points, but such an approach will not be ex-

amined in this work.

In order to provide further knowledge about the

steady periodic heat transfer during cyclic processes of

melting and freezing, in the present paper the problem

has been analysed both numerically and experimentally.

This can be considered as a development of the work of

Hasan et al. [10]; in the present study the boundary

condition of temperature cycling above and below a

fixed melting temperature [10] is changed in a sinusoidal

varying heat flux and the solid phase is significantly

subcooled.

The investigation is limited to a one-dimensional case

with negligible free convection effects. In the experiment,

to prevent the possibility of natural convection in the

Nomenclature

A amplitude of the energy oscillations (kJ/m2)

A� dimensionless amplitude (A=ðq0P=2pÞ)
c specific heat (kJ/kgK)

E energy (kJ/m2)

Em mean value of the energy oscillations (kJ/

m2)

E�
m dimensionless mean value of the energy os-

cillations (Em=ðq0P=2pÞ)
f initial temperature distribution (�C)
Fo Fourier number

H thickness of the specimen (m)

P period (s)

qH reference heat flow (W/m2)

r latent heat of fusion (kJ/kg)

Ste Stefan number

t time (s)

T temperature (�C)
tr time delay, Eq. (16)

TR reference temperature (q0H=ks)
tu time delay, Eq. (15)

x axial coordinate (m)

Greek symbols

a thermal diffusivity (m2/s)

A dimensionless thermal diffusivity (al=as)

u dimensionless initial temperature

k thermal conductivity (W/m �C)
K dimensionless thermal conductivity (kl=ks)
g amplitude reduction

h dimensionless temperature (ðT � TfÞ=TR)
q density (kg/m3)

s dimensionless time (t=P )
n dimensionless axial coordinate (x=H )
x pulsation (rad�1)

X interface position (m)

N dimensionless interface position (X=H )

Subscripts

e external

f melting

in introduced

H at x ¼ H
l liquid

out extracted

R reference

s solid

SPS steady periodic state

t total

0 at x ¼ 0
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liquid phase, the sample, consisting in a solid slab of n-
octadecane (n-C18H38), is placed horizontally and the

heat transfer is directed vertically downward. The side

wall is heavily thermally insulated. While the tempera-

ture at the base is kept uniform and lower than the

melting point, a sinusoidal heat flow is supplied from

above. During the evolution of the process, the tem-

perature inside the octadecane is measured via thermo-

couples.

The numerical analysis provides results obtained by

means of a control volume computer code developed

specially for this work. Firstly, in order to verify the

simplifying hypotheses of the theoretical model, a com-

parison between experimental data and numerical results

is made. Then, the numerical approach is utilised to an-

alyse the dependence of heat exchanged in the process on

the significant dimensionless parameters. Specifically, the

analysis focuses on the roles of the Stefan and Fourier

numbers on the heat storage.

2. Experimental equipment and test procedure

A schematic diagram of the experimental equipment

is shown in Fig. 1. The test cell consists of a polycar-

bonate round duct (outer diameter 150 mm, inner di-

ameter 140 mm and height 210 mm) filled with the

phase-change medium. Its bottom extremity is glued on

a circular aluminium plate, used as the base. Such a base

is kept at a temperature lower than the melting point of

the test material by means of a refrigeration system. The

uniform contact between the base and the refrigerator is

enhanced by a thin layer of thermal conductive paste.

To remove easily the heat flow during the experi-

ment, the refrigeration system uses Peltier cells. A uni-

form distribution of temperature over the whole surface

of the bottom wall is obtained by means of nine ther-

moelectric modules (dimension 40� 40� 4 mm3) con-

nected in series. They are sandwiched between a square

plate of aluminium (2 mm of thickness) and a finned one

(40 mm high fins). Uniform contact between the Peltier

cells and the two aluminium plates is again enhanced by

thin layers of thermal conductive paste. To facilitate the

heat release by the thermoelectric refrigerator, the fins

are immersed in a constant temperature bath, where the

water is continuously stirred. The thermoelectric mod-

ules are supplied by direct current, choosing the polarity

so as to give the cold surface on the test section and the

hot one on the heat sink. The stability of the voltage

supplied to the thermoelectric modules is guaranteed

to within �1%.
In order to reduce the heat transfer to the environ-

ment, the wall of the cylinder is insulated with a 20 mm

thick layer of foam rubber surrounded by a 100 mm

thick layer of expanded polystyrene.

The test volume (height 51.1 mm) is closed on the top

by the heater. The heat flow is obtained by dissipating

via the Joule effect an assigned power in a resistor (450

W of nominal power at 220 V). Such a resistor is placed

inside a copper disk soldered at the end of a cylindrical

copper container (outer diameter 135 mm, inner dia-

meter 133 mm and height 112 mm). This copper cylinder

is placed coaxially inside the polycarbonate container.

The air space between the two cylindrical surfaces is

used as an auxiliary volume of expansion, allowing the

volume of the liquid phase to change during the melting

process.

The temperature inside the specimen is measured by

copper–constantan thermocouples distributed at differ-

ent heights. The positions of the thermocouples are

shown in Table 1. The first and last thermocouples are in

contact, respectively, with the hot and cold walls.

The hot junctions of the thermocouples are sup-

ported by polycarbonate stands. These prismatic sup-

ports (3 mm of side width) guarantee the positions of the

thermocouples that in previous arrangements were un-

certain, being affected by the dragging of the solid dur-

ing the freezing. The wires leave the rigid supports

through holes and grooves made in the bottom wall of

the test cell.

A digital multimeter Hewlett–Packard HP3458A is

used to measure the electromotive force for each ther-

mocouple. The scanning of the thermocouples during

the acquisition is carried out viaa switch control unit

Hewlett–Packard HP3488A. The data acquisition sys-

tem is managed through a personal computer IBM PS2/

30 by means of an IEEE488 standard interface. The

reference joint of the thermocouples is connected to an

ice-point reference KAYE model K170, and the time is

Fig. 1. Schematic diagram of the experimental equipment: ET,

external trigger; PS, power supply; IPR, ice point reference; SU,

switch control unit; DV, digital voltmeter.

Table 1

Positions of the thermocouples

TC no. 1 2 3 4 5 6 7 8

x (mm) 0 6.6 14.4 20.8 25.7 35 44.9 51.1

The origin is placed on the top of the specimen.
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measured with the inner clock of the personal computer.

The measured e.m.f. is converted into temperature using

a third degree polynomial, the interpolation coefficients

being computed on the basis of the ASTM temperature–

e.m.f. tables for standardised thermocouples [14].

The test material is 99% pure n-octadecane, because it
is non-corrosive and non-toxic, chemically inert and

stable, with low vapour pressure, small volume changes

during melting and large enthalpy release during the

phase transition. The n-octadecane does not undergo any
hysteresis cycle and its density decreases regularly as the

temperature increases. Furthermore, its thermophysical

properties are well known from the literature [15].

The sample is heated via resistance heating in a re-

sistor, with the electric power sinusoidally varying in

time. This power is obtained by varying the voltage via a
programmable power supply Hewlett–Packard model

HP6032A driven by a personal computer with an

IEEE488 standard interface. The stability of the period

is guaranteed by an external triggering, obtained with a

signal generator Philips PM5192.

The melting temperature of the PCM has been mea-

sured to be Tf ¼ 28:0 �C, which agrees with published
data [15]. Since n-octadecane possesses a high capacity to
absorb dissolved air, before each experiment the gas

dissolved has been removed with heating and cooling

cycles, carried out keeping the material under vacuum

until bubble formation ceased. The pressure during the

preparation of the test material was about 0.2 bar.

3. Mathematical formulation and numerical solution

The physical system consists of a horizontal plane slab

of phase-change material. For thermal boundary condi-

tions, at the bottom surface there is an assigned temper-

ature and at the top wall an assigned uniform heat

flux. When making comparisons with experimental data,

however the top wall is kept at themeasured temperature.

The mathematical model formulated to represent the

physical system is based on the following simplifications:

• the PCM is homogeneous and isotropic;

• the thermophysical properties are constant in each

phase;

• the phase-change occurs at a single temperature;

• the heat transfer is controlled only by conduction;

• the problem is one-dimensional;

• the difference of density between solid and liquid does

not create appreciable local motion of the liquid.

The problem is then governed by the Fourier equa-

tion, to be solved for the two phases, solid and liquid

oT
ot

¼ a
o2T
ox2

ð1Þ

The initial condition is given by

T ðx; t ¼ 0Þ ¼ f ðxÞ ð2Þ

The boundary conditions are given by

• cold surface

T ðx ¼ 0; tÞ ¼ T0ðtÞ ð3Þ
• hot surface (assigned temperature)

T ðx ¼ H ; tÞ ¼ THðtÞ ð4:1Þ
• hot surface (assigned heat flow)

�k
oT
ox

����
x¼H

¼ qH 1

�
þ cos 2p

P
t

� ��
ð4:2Þ

At the phase-change interface two further conditions

must be satisfied

ks
oTs
ox

�
� kl

oTl
ox

�
x¼X

¼ qsr
dX
dt

ð5Þ

Ts ¼ Tl ¼ Tf ð6Þ

Eqs. (5), (6) are those typical of the Stefan problem.

These consider the release or the storage of energy

during the freezing or melting; generally the interface

position is unknown a priori.

Eqs. (1)–(6) have been made dimensionless in order

to individualise the significant parameters of the prob-

lem; the non-dimensional variables are defined as fol-

lows:

# ¼ T � Tf
TR

s ¼ t
P

n ¼ x
H

The reference temperature is TR ¼ ðqHHÞ=ks
In terms of dimensionless variables Eqs. (1)–(6) can

be written as

• Solid phase

o#

os
¼ Fo

o2#

on2
ð7Þ

• Liquid phase

o#

os
¼ AFo

o2#

on2
ð8Þ

• Solid–liquid interface

o#s
on

�
� K

o#l
on

�
n¼N

¼ 1

Ste 	 Fo
dN
ds

ð9Þ

#sðn ¼ NÞ ¼ #lðn ¼ NÞ ¼ 0 ð10Þ
• Initial condition

#ðn; s ¼ 0Þ ¼ uðnÞ ð11Þ
• Boundary conditions
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cold surface

#ðn ¼ 0; sÞ ¼ #0ðsÞ ð12Þ
hot surface (assigned temperature)

#ðn ¼ 1; sÞ ¼ #HðsÞ ð13:1Þ
hot surface (assigned heat flow)

�K
o#

on

����
n¼1

¼ 1þ cosð2psÞ ð13:2Þ

The significant dimensionless parameters of the

problem are as follows:

Fo ¼ asP
H 2

Ste ¼ TRcs
r

A ¼ al
as

K ¼ kl
ks

#0 ¼
T0 � Tf
TR

u ¼ f ðxÞ � Tf
TR

In general, the Stefan Eqs. (5), (6) introduce a strong

non-linear character into the differential problem pre-

cluding any analytical solution, especially for complex

configurations. Therefore, it is essential to use of a nu-

merical approach.

The present one-dimensional problem has been trea-

ted numerically using the control volume method [16].

To search for the phase-change interface, a front track-

ing, time explicit scheme is adopted [17]. Control vol-

umes of uniform size and constant time steps are used.

To initialise the phase-change, the first advance is cal-

culated by a linear interpolation. The numerical tech-

nique is quite standard; further details are available

in [17].

Beside the temperature distribution, the energy stored

per unit area is also calculated. The cumulative energy

introduced in the system up to time t through the

boundary condition Eq. (4.2) is

EinðtÞ ¼ qHt þ
qHP
2p

sin
2p
P

t
� �

ð14Þ

In the discussion of the results, the amplitude and the

mean value of the energy stored in the system are made

dimensionless by dividing by qHP=2p. The latter is the
amplitude of the energy supplied in a cycle, Eq. (14).

4. Numerical code validation

When the free surface of a liquid and isothermal

semi-infinite layer is moved to a temperature lower than

the melting point, the temperature distribution and the

interface position can be calculated analytically [18]. For

such a case a comparison exercise between numerical

and theoretical results may be arranged in order to

evaluate the reliability of the numerical approach. For

this comparison the value of the parameters are those

used by Comini et al. [19], who chose water as the

working fluid.

When using the computer code for the analysis of the

semi-infinite layer, the domain needs to be limited to a

finite depth (L ¼ 1 m) where a condition of assigned
temperature is set. The computation is then terminated

when the phase-change front reaches a position such to

produce a significant heat flux at the ‘‘infinite–finite’’

cut-off domain.

In the validation exercise the comparison is carried

out for the following parameters: temperature, interface

position and energy exchanged in the solidification

process.

In Fig. 2 the calculated temperature distributions at

five different times are compared with the analytical

solution. The grid size (Dx ¼ 1:25 mm) and the corre-
sponding time step (Dt ¼ 0:5 s) guarantee the stability of
the computation. It is evident that the agreement be-

tween numerical and analytical results is excellent. The

effect of the boundary condition imposed at x ¼ L be-
comes sensible only after almost 80 h.

5. Results and discussion

5.1. Numerical–experimental comparison

Having demonstrated the numerical validity of the

code by comparison with results for an analytical solu-

tion (Section 4), the physical validity of the mathemat-

ical model may be studied by comparison of predictions

with experimental data.

The experimental tests were carried out so as to ob-

tain cyclic processes of melting and freezing in a sample

of n-octadecane. The experiments always included a

preliminary settling period when the sample, previously

frozen in a refrigerator, was kept solid. When the mea-

sured temperature of the sample became practically

Fig. 2. Validation test: comparison between numerical and

analytical temperature distributions (lines: numerical results,

symbols: analytical results).
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uniform, enabling the reaching of steady-state condi-

tions to be assured, the heating system was activated and

the periodic heating process started.

The results of the comparison are reported for three

experimental tests. The runs differ according to the pe-

riod of the sinusoidal power dissipated in the heater (4, 8

and 16 h for Test a, b and c respectively). The temper-

ature was sampled every 4 min, the experiments lasting

for 24 h in the case of Test a and 48 h for Tests b and c.

For these trials a numerical simulation was carried

out by using the measured top and bottom temperature

as the boundary conditions. A linear interpolation of the

sampled data was used to calculate the boundary values

needed in the computation but not available experi-

mentally. The effect of this simplification on the nu-

merical solution is negligible. A uniform grid of 257

control volumes (Dx ¼ 0:2 mm) was used, together with
a time step equal to Dt ¼ 0:2 s, necessary to satisfy the
stability condition.

In Fig. 3, for the selected runs, the measured and

computed temperature distributions are compared. Re-

sults for the three tests show that only Test b reaches

steady periodic conditions; Tests a and c are too short

for this steadiness to be achieved.

For all the tests reported in Fig. 3, the presence of an

interface separating an upper zone, where the material is

liquid, from a lower zone at the solid state, is clearly

evidenced. The liquid zone is characterised by wide os-

cillations of temperature, reaching the maximum am-

plitude at the heated surface (equal to 5, 8 and 15 �C for
Tests a, b and c respectively).

The solid region is characterised by moderate oscil-

lations of temperature, practically negligible in Test a

and increasing with the period. This is because the

greater part of the heat flux introduced in the sample via

the heater is used for the advancement of the interface

and only a limited part of this flux is still available for

the heating of the remaining solid.

In the experiments the coexistence of more phase-

change surfaces was not detected, in contrast to that

found by other authors [1,3,10,12]. This is due to the

particular boundary condition adopted here, in that the

heat flux is never extracted from the top surface and

the solid phase is significantly subcooled at the begin-

ning of the experiment.

In Fig. 3 the non-linear effect due to the Stefan

condition is evident; while the oscillations of tempera-

ture seem to be sinusoidal when completely included in

the liquid or in the solid phase, they change from this

shape when intersecting the phase-change surface. In

fact, they are clearly distorted, as particularly evident in

Test b.

The comparison among the numerical and the ex-

perimental data is very good. The decision to neglect all

phenomena but the conduction, as proposed by Hasan

et al. [10] for a similar experimental arrangement but a

different heating scheme, is confirmed by the excellent

results. Again, then, the prevailing role is played by the

conduction.

From a qualitative point of view the numerical model

gives trends of temperature totally similar to those ex-

perimental, both in the solid and in the liquid phase. The

start of the melting process, and of the following freez-

ing and melting cycles, appears clearly and the wide

oscillations of temperature in the liquid are also well

evident.

Fig. 3. Comparison between computed (lines) and measured

(symbols) temperature distributions for tests of different periods

(a: 4 h; b: 8 h; c: 16 h).
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From a quantitative point of view the comparison is

also positive, with some significant differences in the

solid phase, where the calculated temperature is appre-

ciably higher than the experimental. Furthermore, the

numerical model tends to give faster advance of the

solid–liquid interface. This difference becomes more ev-

ident for increasing Fourier numbers.

The above observed quantitative disagreement can

find a justification in the simplifying assumptions of the

model. First of all a one-dimensional conduction model

has been used to simulate what is a two-dimensional

problem, where the convection, even though lowered by

the choice of the material and of the manner of heating,

is always present. The one-dimensional mathematical

model excludes lateral heat exchange, which would tend

to reduce the heat flow available at the interface, and

therefore slow down the process. Furthermore, the lat-

eral heat exchange, and therefore the lower values of

temperature in the peripheral zones of the sample, can

be the origin of convective motions. The effect of the

convection is to increase the heat transfer on the lateral

zone of the liquid phase and result therefore in a further

slowing in the advance of the interface. It must be noted

that for periodic heating the quantitative disagreement is

less significant than for the case of constant heating [20].

5.2. Energy evaluations

Since both the numerical and the physical validations

of the computer code are now positively demonstrated,

the energy behaviour of this phase-change system has

also been numerically analysed. Due to the complexity

of the problem, which involves both sensible and latent

heat transfer, the analysis is mainly focused on the role

played by the significant dimensionless parameters.

For a case characterised by Ste ¼ 0:5, Fo ¼ 4, K ¼ 1,
A ¼ 1:17 and #i ¼ #0 ¼ �0:47, the trends of total, sen-
sible and latent energy stored and of the interface posi-

tion are presented in Fig. 4 as a function of time. It is

evident that, after an initial phase of sensible heating,

the melting front moves until it oscillates steadily around

a constant mean value. The total energy storage, steady

periodic after only a few periods, seems to be sinusoidal

and, for the following evaluations, has been interpolated

as

EtðtÞ ¼ Em þ A sin
2p
P

ðt
�

� tuÞ
�

ð15Þ

Unlike the total storage, the sensible and latent heat

storage show trends periodic but clearly not sinusoidal,

lagging each other in time. A significant contribution to

this phase shift is due to the preliminary sensible heating

of the slab. This delays the beginning of the phase-

change phenomenon, which starts only when the top

surface reaches the phase-change temperature.

In more depth, the analysis of the energy stored in the

system shows that for the highest Fourier numbers the

distribution diverges, even if marginally, from sinusoi-

dal. For this reason in Eq. (15) the mean value of the

energy stored over a period, Em, is calculated separately
in order to ensure that the same energy has been stored

of the real distribution.

In Fig. 5 the dimensionless mean value, E�
m, and

amplitude, A�, of the energy stored at the steady periodic

state, Eq. (15), are reported as a function of the Fourier

number, for several values of the Stefan number. All the

data refer to the same dimensionless initial and bottom

temperature, #i ¼ #0 ¼ �0:47, and to the following di-
mensionless properties of the PCM, namely K ¼ 1 and
A ¼ 1:17.
The dimensionless mean value of the total energy

stored in the system (Fig. 5a) shows a regular behaviour:

for a fixed Stefan number it decreases as the Fourier

number increases. If, instead, lines of constant Fourier

number are plotted on an energy–Stefan number graph,

precisely the same pattern would result. In a physical

sense it means that for high frequencies of oscillation

(low Fourier number values) or for high latent storage

capabilities (small Stefan number values) at the periodic

steady-state the mean value of the energy stored in the

system can be great. Conversely, for the range of validity

of the analysis, limited to values of the Stefan and

Fourier numbers where simultaneous sensible and latent

heat transfer occur (E�
m > 1), either for large periods

(high Fourier numbers), or for low latent storage ca-

pabilities (high Stefan numbers), the dimensionless mean

energy stored tends to small values.

The dimensionless amplitude of the total energy

stored in the system is shown in Fig. 5b. For small values

of the Fourier number (Fo6 0:125) the dimensionless
amplitude of the total energy stored (Fig. 5b) is constant

and independent of the Stefan number. In particular,

within this range the dimensionless amplitude is equal to

unity. This means that the energy stored oscillates with

Fig. 4. Energy storage and interface position in the steady pe-

riodic heating.
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the same amplitude as the energy introduced, and that

the entire oscillation of heat flux supplied is converted

into an oscillation of the melting front. In this region the

system behaves as a damper, because against an oscil-

lating heat input (Eq. (4.2)), the flux emerging is con-

stant (Fig. 6).

For higher values of the Fourier number

(Fo > 0:125) the dimensionless amplitude of the total
energy stored in the system begins to be influenced by

the Stefan number. The heat flux emerging from the

bottom surface begins to oscillate (Fig. 6). In this case

for a fixed Stefan number the dimensionless amplitude

attains a maximum (Fig. 5b). The position of this

maximum occurs at reduced Fourier numbers, while its

value increases with Stefan numbers. After the maxi-

mum, the dimensionless amplitude, A�, decreases for

increasing Fourier numbers at increasing rates as the

Stefan number is increased. However, for small values of

the Stefan number, the dimensionless amplitude of

the oscillation of energy is less sensitive to the Fourier

number and therefore to the period of the oscillation.

As a general comment, it can be observed that the

dimensionless amplitude of the oscillations of energy

stored becomes more sensitive to the Fourier number for

the higher Stefan numbers, that is when the sensible

heating becomes prevalent. When the oscillations are of

long period (high Fourier numbers) the amplitude of the

energy stored can be negligible. Conversely, when the

oscillations are of short period (low Fourier numbers)

the amplitude of the energy stored is practically constant

and equal to the amplitude of the energy introduced into

the system. This behaviour, and particularly the occur-

rence of a maximum higher than one, can be explained

by considering that the energy storage is given by the

time integral of the difference between the sinusoidal

heat fluxes introduced, Eq. (4.2), and extracted, Fig. 6.

Fig. 5. Dimensionless mean value (a) and amplitude (b) of the

oscillations of the total energy stored at the steady periodic

state.

Fig. 6. Heat fluxes introduced and extracted from the bound-

ary surfaces of the system after 94 periods when the steady

periodic state is attained (a: Ste ¼ 0:25; b: Ste ¼ 0:5; c: Ste ¼
1:0).
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The heat flux outgoing from the bottom surface

shows, as well evident in Fig. 6, a reduced amplitude and

a time delay changing with the Fourier and Stefan

numbers, when compared to the entering heat flux.

These two parameters, time delay tr and amplitude re-
duction g, are obtained by interpolating the data of Fig.
6 with the following equation:

qout ¼ qH 1

�
þ g cos

2p
P

ðt
�

� trÞ
��

ð16Þ

In Fig. 7 are shown the results of this interpolation for

different values of the Fourier and Stefan numbers. In

more detail, for a fixed Stefan number the amplitude

increases and the phase shift reduces with the Fourier

number.

Returning to the energy behaviour of the system (see

Appendix A for full details) when subtracting two si-

nusoidal signals of the same pulsation but of different

amplitude and phase (energy introduced and extracted),

the amplitude of the resulting signal (energy stored)

changes from the difference of the amplitudes for tr ¼ P
to their summation for tr ¼ 0. This enables the ampli-
tude of the oscillations of the energy stored to be

greater than that of the energy introduced into the

system.

6. Concluding remarks

A numerical code has been developed for the analysis

of cyclic one-dimensional phase-change in a slab which

gives useful and reliable results. It enables all the in-

formation necessary to be obtained in studying the

process, for which conduction is prevalent over the other

heat transfer effects.

A comparison between experimental and numerical

distributions of temperature gives very good results. In

this comparison only minor discrepancies arise. When it

is considered that in the experiment both free convection

and heat transfer through the side wall of the specimen

are small but not negligible, the results of the compari-

son serve to justify the assumptions made as the basis of

the mathematical model.

The analysis of the energy behaviour of the system

also gives interesting results. The energy stored in the

system oscillates in time with the energy introduced. A

regular behaviour is shown by dimensionless mean

value of the energy stored, decreasing for increasing

Fourier numbers and also for increasing Stefan num-

bers. For small values of the Fourier number the di-

mensionless amplitude of the oscillations of the energy

stored in the system is constant, independent of the

values of the Stefan number. In this case the system is

able to act as a damper of entering energy oscillations

and the heat flux emerging from the output surface is

almost constant. Conversely, for increasing Fourier

numbers the amplitude strongly depends on the Stefan

number. Furthermore, the amplitude shows a maxi-

mum, which is more marked for large values of the

Stefan number. It means that for large period of oscil-

lation there are situations where the system does not

exert any damping effect.
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Appendix A

The energy introduced into the system is given by Eq.

(14)

EinðtÞ ¼
Z t

0

qinðtÞdt ¼ qHt þ
qHP
2p

sin
2p
P

t
� �

ðA:1Þ

When the steady periodic state is attained, it means after

a certain time referred to as tSPS, the heat flow outgoing
from the bottom of the specimen is given by Eq. (16) and

the energy released from the system is

Eout;SPSðtÞ ¼
Z t

tSPS

qoutðtÞdt ¼ qHðt � tSPSÞ

þ gqHP
2p

sin
2p
P

ðt
��

� trÞ
�

� sin 2p
P

ðtSPS
�

� trÞ
��

ðA:2Þ

The oscillating part of the energy stored by the system,

Eq. (15), is given by the difference of the oscillating parts

of Eqs. (A.1) and (A.2)

Fig. 7. Time delay and amplitude reduction of the heat fluxes

extracted from the system.
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A sin
2p
P

ðt
�

� tuÞ
�

¼ qHP
2p

sin
2p
P

t
� ��

� g sin
2p
P

ðt
�

� trÞ
��

ðA:3Þ

Remembering that

X sinðt þ aÞ þ Y sinðt þ bÞ ¼ S sinðt þ uÞ ðA:4Þ

where

S2 ¼ X 2 þ Y 2 þ 2XY cosða � bÞ ðA:5Þ

tanu ¼ X sin a þ Y sin b
X cos a þ Y cos b

ðA:6Þ

the amplitude of the oscillations of the energy stored

becomes

A ¼ qHP
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2 � 2g cos 2p

P
tr

� �s
ðA:7Þ

and their time delay

tu ¼ P
2p
tan�1

�g sin 2p
P tr
	 


1þ g cos 2p
P tr
	 


 !
ðA:8Þ

It is evident that the dimensionless amplitude of the

oscillations of the energy stored can be A� ¼ ð1þ gÞ if
tr ¼ P=2 and A� ¼ ð1� gÞ if tr ¼ 0, it means for low and
high Fourier numbers respectively (Fig. 7).
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